Ukutshintshela kwiibhetri zeLi-ion zombuso oqinileyo kuya kwenza inkqubela phambili ukuya kuxinzelelo lwamandla oluyi-1000 W·hour/litha nangaphezulu.Imidibaniso ye-mesoporous oxide matrix ezaliswe zi-nonvolatile ionic liquid electrolyte fillers ziye zajongwa njengokhetho oluqinileyo lwe-electrolyte.Nangona kunjalo, ukuvalelwa okulula kwezisombululo ze-electrolyte ngaphakathi kweepore ezinobungakanani be-nanometer kukhokelela ekuqhubeni kwe-ion ephantsi njengoko i-viscosity ikhula.Apha, sibonisa ukuba i-Li-ion conductivity ye-nanocomposites equka i-mesoporous silica monolith ene-ionic liquid electrolyte filler ingaba phezulu ngokuphindwe kaninzi kunolo lwe-electrolyte ye-ionic esulungekileyo yolwelo ngokwaziswa komgangatho womkhenkce ohlangeneyo.I-adsorption eyomeleleyo kunye nolungelelwaniso lweeathom ze-ionic zolwelo zizenza zingashukumi kwaye ziqine njengomgangatho womkhenkce ngokwawo.I-dipole phezu kwe-adsorbate ye-mesophase umaleko iphumela ekusonjululweni kweeyoni ze-Li+ ukwenzela ukuqhuba okuphuculweyo.Umgaqo obonakalisiweyo wokuphuculwa kwe-ion conduction unokusetyenziswa kwiinkqubo ze-ion ezahlukeneyo.
Ii-electrolyte zombuso oqinileyo kulindeleke ukuba zinike ukomelela okulandelayo kweebhetri ze-Li-ion ukuba zigqithe isilingi esebenzayo eyi-800 W·hour/litha okanye 300 W·hour/kg ebekwe kwi-cathode ekhoyo kunye neekhemistri ze-anode.Ukonyuka okulindelweyo kuxinano lwamandla kwiibhetri zombuso oqinileyo luvela kwiminikelo emininzi, yonke ijolise ekunyuseni umthamo wepesenti yezinto ezisebenzayo kwiseli.Eyona nto ipapashiweyo kukuqaliswa kwesinyithi se-lithium ukuba sithathe indawo yegraphite kunye negraphite / isilicon njenge-anode.Intsimbi ye-lithium ecocekileyo inobuninzi bamandla obunokwenzeka kwaye iya kufuna indawo encinci.Nangona kunjalo, imiba emininzi isafuna ukusonjululwa, njengokuphendula okungenakuguqulwa (kwaye ke ukusetyenziswa) kwesinyithi se-lithium, ukubunjwa kwe-dendrite, ukwanda koxinano olusebenzayo lwangoku lweefoyile ze-lithium ezicwangcisiweyo xa kuthelekiswa ne-porous graphite (silicon) electrode, kwaye, okokugqibela. kodwa ubuncinci, "ukunyamalala" kwe-lithium ngexesha lokukhutshwa (deplating) kwaye ngaloo ndlela ukulahlekelwa koqhagamshelwano kunye ne-electrolyte eqinile.Ubume boomatshini bobume be-ceramic eqinile ye-electrolyte eneneni ayinakuthotyelwa, kwaye uxinzelelo olugqithisileyo kufuneka lufakwe ukucinezela i-lithium ngokuqinileyo ngokuchasene necandelo eliqinileyo le-electrolyte.Amanqaku oxinzelelo olucacileyo anciphisa indawo esebenzayo ngakumbi, ekhokelela ekubunjweni kwe-dendrite yendawo kunye ne-spongy deposits.Iipolymer electrolyte zithobela ngakumbi ngoomatshini kodwa azikabonakalisi i-ionic ephezulu ngokwaneleyo kwiqondo lobushushu begumbi.Izinto ezintsha ezinomdla kakhulu kulo mba zi-silica gel electrolytes, eziye zabizwa ngokuba yi "ionogels," apho i-ionic liquid electrolyte (ILE) ivalelwe kwi-nanoporous silica matrix (1).I-porosity ephezulu kakhulu ye-silica matrix (i-70 ukuya kwi-90%) inika ezi zixhobo ze-electrolyte ze-nanocomposite ukufana okufana nejeli kwaye ngaloo ndlela zizenza zihambelane ngoomatshini ngokufanayo nee-electrolyte ze-polymer.Ezi gel ze-silica ngamanye amaxesha ziboniswa njenge-electrolytes eqinile edibeneyo, njengoko iqulethe ulwelo.Nangona kunjalo, kwi-silica nanocomposites, njengoko kuchazwe kweli phepha, i-electrolyte ye-ionic "ye-liquid" iba yinto eqinileyo xa ivalelwe kumashumi eeshaneli ezinobungakanani be-nanometer zombini ngokunyuka kwe-viscosity kunye ne-adsorption eludongeni lwe-silica oluvala i-silica. ijelo.Ukuba i-silica matrix ingasebenza nje njengesahluli esinemingxuma, ngoko ke ukonyuka kwe-viscosity ye-electrolyte engamanzi evaliweyo kungakhokelela ekuhlisweni kokuhanjiswa kwe-ionic.Endaweni yoko, ukusebenzisana phakathi kwee-molecule ze-ILE kunye nodonga lwe-silica pore kwenza iimpawu ze-nanocomposite zihluke kwisamba samacandelo ayo.Ukungeniswa kolwelo lwe-ayoni kwiioksidi ngokuyilwa kolwele oluluqilima lwe-mesophase ukuya kuthi ga kwiinanomitha ezimbalwa ngobukhulu kubonisiwe kumphezulu ocwangcisiweyo ngemakroskopu yamandla eathom (2).I-adsorption ekhethiweyo ye-ionic liquid anion kunye ne-cations kumphezulu we-oxide kunokukhokelela ekuphuculweni kokuhanjiswa kwe-Li+ ecaleni kwezi ndlela zojongano.Ewe kunjalo, uphuculo ecaleni kojongano lweoksidi kufuneka lubuyekeze okanye lugqithise ukuhanjiswa okucuthiweyo nge-ILE evalelwe kumbindi wepores.Ke ngoko, ubungakanani obuncinci bepore kunye nemilinganiselo ephezulu yomphezulu ukuya kumthamo iyafunwa.Ukuza kuthi ga ngoku, ii-ionogels ezine-ion conductivities ezisondela kuleyo ye-ILE ngokwayo zibonakaliswe ngokulungiswa kwesakhiwo se-mesoporous (3).Oku kuthetha ukuba uphuculo lwe-interface lwalusele lukhona kodwa kungekuko ukugqithiswa kwe-conductivity enkulu.
Ukulungiswa kwe-ionogels kuqala kumxube we-homogeneous liquid, apho i-ILE yongezwa kwisisombululo se-sol-gel ye-precursor ye-synthesis ye-oxide matrix (4, 5).Ngale ndlela, i-ILE kunye ne-matrix zenza i-composite ngendlela "in situ": I-precursors kwisisombululo isabela ukwenza i-oxide matrix ejikeleze i-template ye-ionic engamanzi, ukuyigubungela kwinkqubo.Ngaphantsi kweemeko ezithile zokwenziwa, i-ILE-SCE elungisiweyo (i-electrolyte ehlanganisiweyo eqinile) ingaba kwimo ye-monolith kunye ne-ILE efakwe kwinethiwekhi ye-mesoporous inorganic oxide eqhubekayo.Ukuza kuthi ga ngoku, uninzi lwe-silica-based ILE-SCEs lulungiswe ngolu hlobo, nangona imizekelo yenziwe nge-alumina (6), i-titania (7), kunye ne-tin oxide (8).Uninzi lwee-sol-gel formulations ezixeliweyo ziqulethe i-ILE, i-alkyl-silicate efana ne-tetraethyl orthosilicate (TEOS) njenge-silica precursor, kunye ne-asidi ye-formic njenge-reagent kunye ne-solvent (9, 10).Ngokwendlela ecetywayo (i-11) yale nkqubo ye-sol-gel, i-silica iveliswa kakhulu yi-reaction phakathi kwe-TEOS kunye ne-asidi ye-formic, nangona amanzi eveliswa ngexesha lenkqubo ye-sol-gel.Ngaphandle kwale mixube “engeyiyo” esekwe kwi-asidi ye-asidi, imixube ye-sol-gel ene-aqueous ene-HCl njenge-catalyst kunye ne-H2O njenge-reagent (kunye ne-solvent organic) nayo ichaziwe, nangona kunjalo, kule meko yokwenziwa kwe-silica composite ulwelo lwe-ionic kuphela (12–15).
Ngokuqhelekileyo, ii-ionogels zibonisa i-ion conductivity ephantsi kunaleyo yereferensi ye-ILE.Isizukulwana sokuqala se-ionogels sasinemilinganiselo yobushushu begumbi ngokuqhelekileyo kuphela malunga ne-30 ukuya kwi-50% yexabiso elikhulu le-ILE, nangona eminye imizekelo ifikelela kwi-80% iye yaxelwa (9, 10, 16, 17).Isiphumo somxholo we-ILE kunye nesiphumo se-pore morphology kwi-ionogel conductivity sele iphandwe ngokubanzi (3);nangona kunjalo, akukho fundo lucwangcisiweyo lweziphumo zokuphucula ujongano lwaziwayo.Wu et al.(18) kutsha nje kunikwe ingxelo nge-ionogel ekwi-situ esebenzayo, ekwanike uphuculo lokuqhuba xa kuthelekiswa nobuninzi be-ILE.Ukuphuculwa kubangelwa ukusebenzisana phakathi kwe-anion kunye ne-3-glycidyloxypropyl iqela elisebenzayo kwi-silica surface.Oku kufunyanisiweyo kuyayixhasa imbono yokuba ukusebenza komphezulu ngenene kunokonyusa unikezelo lwenkqubo yojongano.
Kulo msebenzi, sibonisa ukubunjwa kwe-situ yomaleko oqinileyo wamanzi e-ice kwi-silica kunye neenkcukacha zendlela ye-interfacial Li-ion conduction ngokunyuka kwentsebenziswano ye-dipole phakathi komgangatho osebenzayo we-ice kunye ne-adsorbed ionic liquid mesophase layer.Ngokudibanisa indawo ephezulu yangaphakathi kunye ne-ice-dense layer functional layer, i-electrolyte eqinile ye-nanocomposite (i-nano-SCE) ene-200% ephezulu ye-Li-ion conductivity kunokuba ireferensi ye-ILE eninzi ifunyenwe.I-silica matrix iboniswa inobume bokwenyani be-monolithic mesoporous enemithamo yepore kunye neendawo ezingaphezulu ukuya kuthi ga kwi-90% kunye ne-1400 m2/g, ngaloo ndlela ibonelela ngokugqithisileyo umphezulu ukuya kumthamo womlinganiselo ovumela igalelo elikhulu lophuculo lokuqhuba ecaleni kwezi ndawo zojongano.Ngokusebenza okuphuculweyo komphezulu we-silica odityaniswe nokwandiswa komlinganiselo we-surface-to-volume ratio, i-nano-SCE ene-ion conductivities egqithisa kakuhle kwi-10 mS/cm inokuba nokwenziwa ngobunjineli kwaye ngaloo ndlela inomtsalane kakhulu kwiibhetri zomthamo omkhulu wosetyenziso lweemoto.
Ugxininiso lwephepha lethu lukwindlela yokwenziwa kojongano oluphuculweyo ngokuyilwa komaleko we-mesophase ngobungqina obuvela kwiRaman, iFourier transform infrared (FTIR), kunye ne-nuclear magnetic resonance (NMR) spectroscopy.Uzinzo lwe-interface yezinto zethu ze-nano-SCE kwii-voltages eziphezulu ziboniswa kusetyenziswa i-electrode ye-lithium manganese oxide (LMO) yefilimu encinci.Ngale ndlela, ugxininiso lugcina kwizinto eziphathekayo kunokudibanisa i-electrode kunye nemiba ye-cell assembly.Ngokufanayo, ifestile ye-electrochemical kunye nokuzinza ngokuchasene ne-lithium metal foil zibonakaliswe ngokupheleleyo.Ukusebenza kunye nokudityaniswa kwe-nano-SCE yethu kuboniswa ngendibano kunye neemvavanyo zokulinganisa ukusebenza kwe-lithium iron phosphate (LFP) kunye neeseli ze-lithium titanate (LTO).Ukuzinza kwe-electrolyte yethu kunye nokungasebenzi kwe-electrochemical yamanzi e-ice kuboniswe ngokujikeleza kwexesha elide le-symmetric Li-SCE-Li iiseli.Ukuphucula ubuninzi bamandla, ukusebenza kwezinga, kunye nokusebenza kwebhayisikili yeeseli ezihlanganiswe ngokupheleleyo kuya kuba yingqwalasela yamaphepha alandelayo (19, 20).
Ukukhuthazwa kwe-ion conductivity ye-interfacial kwiinkqubo ezihlanganisiweyo zesigaba ezibini ziyaziwa phantse iminyaka engama-90 (21).Ngokomzekelo, ukuya kuthi ga kwii-odolo ezine zokunyuka kwe-ionic conductivity ibonakaliswe kwiimbumba zetyuwa ye-lithium elula njenge-lithium iodide ene-mesoporous oxide particles ezifana ne-silica okanye i-alumina xa kuthelekiswa ne-ion conductivity ye-electrolyte yetyuwa ye-lithium ecocekileyo (22).Ii-ion kwezi SCEs zinokusasazeka ngokukhawuleza okukhulu ecaleni kwe-Li ion-ecinyiweyo (okanye isithuba esityebileyo) sombane ophindwe kabini umaleko owenziwe kwi-oxide/electrolyte interface.Ngelishwa, i-ion conductivity efunyenwe kwezi zinto zilula zimbini-zimbini ze-inorganic solid-solid composites (1) ayigqithanga kwi-1-mS/cm2 threshold efunekayo ukubhula umgama ongamakhulu ambalwa-micrometer phakathi kweepleyiti zomqokeleli zangoku kwibhetri ye-Li-ion. .Ingqikelelo ye-heterogeneous doping ene-oxide matrix ukwenza ubunjineli be-ionic conductivity nayo iye yaphononongwa kwi-polymer electrolytes (23) kunye ne-ILEs (24), ezinomgangatho ophezulu we-ionic conductivity ukuqala ngawo.Ukongeza, ikhemikhali yemolekyuli (yestereo) etyebileyo yecandelo lesithathu ivula iindlela ezongezelelweyo zokuqhuba i-ion, njengoko (di)imolekyuli ezinjenge-polar ezifana ne-solvent zinokuthatha inxaxheba ekwenziweni kombane ophindwe kabini.Ngelixa isenzo sokusombulula samaqela e-ether kwi-polyethylene oxide polymer electrolytes ibonelela nge-ion conductivities ye-solid-state ye- ~ 10−6 S/cm ye-LiClO4 ukuya kwi- ~ 10−5 S/cm ye-LiN(SO2CF3)2, i-composites yabo ne-silica, i-alumina , okanye i-titania nanoparticles ngokwenene inokubonelela ngaphezu kwe-10-fold ukuphuculwa kwe-ion conductivity elinganisiweyo (25), ngelishwa, kusekho ngaphantsi kweqondo lokushisa kwegumbi le-1 mS / cm.Izisombululo ze-ILE ziyimixube ye-Li-salt solute kunye ne-ionic liquid solvent, enokuthi ibe ne-conductivities ephezulu ye-ionic phakathi kwe-0.1 kunye ne-10 mS / cm (26, 27).Iinzame ezininzi zenziwe ukunyusa i-ion conductivity ngokuxuba okanye i-gelling kunye ne-oxide nanoparticles okanye ukuvalela i-ILE kwii-microparticles ze-mesoporous (9, 16, 28, 29).Nangona kunjalo, ukuza kuthi ga ngoku, akukho kuphuculwa kwe-ion conductivity kuye kwabonwa kwi-component ye-Li-salt / i-ionic liquid / oxide composite (umzobo S1).Nangona ukusetyenziswa kwe-silica microparticles ye-mesoporous kukhokelela ekuqhubeni okuphezulu xa kuthelekiswa ne-composites kunye ne-nanoparticles eqinile, indawo ye-interfacial surface kunye ne-ion conduction promotion akwanelanga ukudlula ubuninzi be-ILE conductivity.
I-silica ye-Mesoporous yinto eyaziwayo esetyenziswa kwi-catalysis.Ngokuqhelekileyo yenziwa yi-hydrothermal okanye i-synthesis ye-sol-gel elula.Iinkqubo ze-Hydrothermal zihlala zikhokelela kwi-mesoporous powders, kodwa ngolawulo olunenkathalo lwenkqubo ye-sol-gel yobushushu begumbi, ii-monoliths ezinkulu zeglasi okanye ii-aerogels nazo zenziwe.I-silica matrix yenziwe nge-hydrolysis kunye nokuphendula kwe-condensation ye-tetra-alkyl orthosilicates (30).Isitshixo ekulawuleni isakhiwo se-pore kukusetyenziswa kweetemplates, umzekelo, i-micelle yohlobo lwe-surfactant, apho i-silica matrix yenziwe khona.Xa ulwelo lwe-ionic longezwa njengemolekyuli yetemplate, i-hydrated silica matrix isebenzisana nolwelo lwe-ionic, yenze ijeli, kwaye emva kokunyanga nokomisa, ulwelo lwe-ionic luvalelwa ngaphakathi kwe-silica matrix eqinileyo nanoporous (13).Xa ityuwa ye-lithium yongezwa njengenxalenye yesithathu, i-ILE evalelwe kwi-silica matrix yenza i-silica gel electrolyte, ekwabizwa ngokuba yi-ionogel (24).Nangona kunjalo, ukuza kuthi ga ngoku, ezi electrolyte ze-silica gel zibonisa ukuhanjiswa okusondele kwi-ILE yobuninzi kodwa kungagqithisi kuyo, ngaphandle kwemeko enye apho i-silica yayisetyenziswe ngokwekhemikhali (jonga Intshayelelo) (18).
Apha, sibonisa, ukunyuswa okucwangcisiweyo kwe-Li-ion conductivity ye-nanocomposite kakuhle ngaphaya kwe-ILE ecocekileyo.Umzekelo we-1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (BMP-TFSI) isetyenziswa apha.Kucingelwa ukuba i-adsorption ye-ionic liquid molecules kwi-OH-terinated silica surface ikhuthazwa ubukho be-interfacial ice layer.Ukudityaniswa okuqinileyo kwehydrogen phakathi kwamanzi omkhenkce kunye ne-TFSI− anion ikhuthaza ukucwangciswa kwemolekyuli yolwelo lwe-ayoni, ngokufana nemimandla eyaliweyo eyenza ngokuzenzekelayo kulwelo lwe-ionic (31).Umahluko ophambili kunye nemimandla eyenziwe ngokungacwangciswanga ngobuninzi be-ILE kukuba i-ice layer isebenza njengomaleko osebenzayo (i) obangela i-molecular order kwi-oxide surface kwaye (ii) yazisa ngokwaneleyo i-H-bonding ukuze ifake i-dipoles ukukhulula i-Li + yamahhala ukwenzela ukuqhuba okuphuculweyo.Ecaleni kokunyuka koxinzelelo lwe-Li + yasimahla, siya kubonisa ukuba amandla okusebenza okusasazwa asezantsi ecaleni kwe-interface edibeneyo kunye ne-adsorbed ILE umaleko kunye nomkhenkce wamanzi.
Umaleko wamanzi omphezulu ambalwa-monolayers-thiye kwi-silica ngumaleko oqinileyo, njengoko ubotshelelwe ngamandla kumaqela e-silanol ngeebhulorho ze-H kwaye ke ikwabizwa ngokuba yi-ice layer (32).Ubuninzi bayo kunye nobukhulu (kuqikelelwa ukuya kwii-monolayers ezintathu ukuya kwezine, kunye ne ~ 0.25 nm kwi-monolayer yomkhenkce) zikwi-equilibrium ye-thermodynamic kunye noxinzelelo lwamanzi oluyinxenye [ukufuma okuhambelanayo (RH)] kwimeko-bume (fig. S2).Sibonisa ukuba i-ion conductivity iyanda kunye nobukhulu bomaleko wamanzi omkhenkce njengoko i-hydrogen bonding kunye ne-adsorbed ionic layers nayo iyanda.Uluhlu lwamanzi e-ice luzinzile lufana namanzi e-crystal kwi-chemical compounds.Oku kuchasene kakhulu ne-electrolyte yamanzi egxininiswe kakhulu okanye ebizwa ngokuba ngamanzi kwimixube yetyuwa, apho ifestile ye-electrochemical yandiswa kakhulu kodwa, ekugqibeleni, amanzi asasebenza ngokwe-electrochemically (33).
Ngokwahlukileyo kwi-formic acid-catalyzed ionogel recipes, sisebenzise umxube we-pH 5 ophakathi kunye nokugqithisa okukhulu kwamanzi kunye ne-PGME (1-methoxy-2-propanol) eyongezwe kwi-TEOS precursor kunye ne-Li-TFSI yetyuwa kunye ne-BMP-TFSI ionic liquid.Kule pH, iimpendulo ze-hydrolysis zicotha, ngelixa ukuxinanisa kulungile (30).I-Li ions ikholelwa ukuba isebenze njenge-catalyst ye-hydrolysis reaction, njengoko kungekho gelation eyenzekayo ngokungabikho kwetyuwa ye-lithium ngelixa zombini zine pH efanayo ye-5. Umlinganiselo we-molar we-ionic liquid kwi-TEOS (kunye ne-silica moieties) iboniswe njengexabiso le-x kwaye yahluka phakathi kwe-0.25 kunye ne-2. Umlinganiselo we-molar ye-BMP-TFSI kwi-Li-TFSI igcinwe kwi-3 (ehambelana ne-1 M isisombululo se-Li-ion).Ukumisa okucothayo kwakuyimfuneko ukugcina ingqibelelo yesakhiwo sesakhiwo se-monolith (jonga i-Materials and Methods).Umzobo 1A ubonisa ifoto ye-monolithic pellet efunyenwe emva kokumisa i-vacuum.Ukomisa i-vacuum yeeyure ezingama-72 kwakwanele ukususa bonke ubumanzi ukuya kwindawo apho onke amanzi asimahla asusiweyo ngelixa i-adsorbed ice layer yahlala iphelele, njengoko kungqinwe yi-FTIR.Akukho kushukuma kwamanzi asimahla kufunyenwe kwi-1635 cm-1 nakweyiphi na iisampulu emva kwenyathelo lokumisa ivacuum (umzobo 2).Ukuthelekisa, i-spectrum ye-FTIR yesampuli ye-nano-SCE (x = 1.5) egcinwe kwi-1 iveki kwibhokisi yeglavu ye-N2 kwi-60% RH ibonisiwe.Kule meko, i-peak ecacileyo yamanzi yamahhala ibonakala.Zonke iisampuli, kwelinye icala, zibonise umqondiso ocacileyo wokusebenza komphezulu we-silanol (i-Si─OH ukugoba phakathi kwe-950 kunye ne-980 cm-1) kunye nomgangatho wamanzi omkhenkce odityanisiweyo (O─H eyolula kwi ~ 3540 cm−1) edityaniswe i-─OH amaqela omphezulu nge-H-bonding (iinkcukacha ezingaphezulu ngezantsi).Iibhotile zazilinganiswe ngaphambi nangemva kwesinyathelo sokumisa ukulinganisa amanzi agcinwe kwi-nano-SCE (itafile ye-S1).Kamva, siya kubala inani lee-monolayers ezihambelanayo ze-ice layers ze-ice-bound layers ukusuka kubunzima obuninzi.Iipellets ezomiswe ngevacuum zangeniswa kwibhokisi yeglavu [<0.1-ppm (iinxalenye ngesigidi) i-H2O] kwaye zigcinwe kwiibhotile ezivaliweyo ukugcina umthamo wokuqala wamanzi.Umthamo omncinci uthatyathwe kwi-pellet ukuze uphawule ngakumbi.
(A) Umfanekiso weepellets ezimbini ze-nano-SCE (ngasekhohlo) ezenziwe kwi-vial;emva kwe-gelation, i-pellet ebonakalayo ifunyenwe.Qaphela ukuba i-pellet ibonakala ngokucacileyo kwaye ngoko ke inikwe i-blue hue ukuze ibonakale.Xa i-ILE isusiwe, i-pellet emhlophe enqabileyo ihlala kwi-silica matrix ene-porous (ekunene).(B) Ukuskena i-electron microscopy (SEM) umfanekiso we-SiO2 matrix ehlala emva kokususwa kwe-ILE.C(D) Ukuhanjiswa kwe-electron microscopy (TEM) umfanekiso obonisa ukupakishwa okuxineneyo kwe-7- ukuya kwi-10-nm ye-silica nanoparticles njengeebhloko zokwakha zezinto eziphathekayo ze-matrix.(E) I-porosity yesakhiwo se-matrix esicwangciswe kwii-molar ratios ezahlukeneyo ze-ILE ngokubhekiselele kwi-SiO2 (x ixabiso).Umgca odayiweyo unika i-porosity yethiyori egqitywe kwiqhekeza levolumu ye-ILE kunye ne-silica.Iisampulu ezihlanjululweyo ze-acetone (izikwere ezimnyama) zomiswa emoyeni, ezinika ukuwa kwesakhiwo se-x> 0.5.I-Supercritical CO2 drying ye-ethanol-rinsed nano-SCE (izangqa eziluhlaza) ikhusela ukudilika ukuya kwi-x = 2 ukwenzela ukususwa okucothayo okongeziweyo kwe-CO2 (isangqa esivulekileyo).BET, Brunauer-Emmett-Teller.Ikhredithi yefoto: Fred Loosen, imec;Akihiko Sagara, Panasonic.
(A) I-IR spectra ye-nano-SCE njengoko yomisiwe kwi-vacuum (emnyama) kwaye emva koko yomiswe ngakumbi kwibhokisi yeglavu kunye ne-0.0005% RH kwiintsuku ze-9 (blue) kwaye ibonakaliswe kwi-30% ye-RH kwiintsuku ze-4 (ebomvu) kunye ne-60 I-% RH iintsuku ezisi-8 (eziluhlaza), ngokulandelelanayo.okanye, iiyunithi ezingafanelekanga.(B) I-cyclic voltammograms ye-Li/SCE/TiN isitaki esinamaxabiso angu-x ka-1.0 (bhlowu), 1.5 (luhlaza), kunye no-2.0 (obomvu) kunye ne-ILE reference (emnyama);i-inset ibonisa okwangoku kwisikali se-logarithmic.(C) I-Cyclic voltammograms ye-Li / SCE (x = 2) / 40-nm i-TiO2 stack (ebomvu), i-ILE (i-dotted black), kunye ne-ILE spiked nge-5 weight % (wt %) H2O (dash-dotted blue line);kwi (B) kunye (C), imilinganiselo kunye ne-ILE kunye ne-ILE ene-H2O yenziwe kwi-electrode ye-three-electrode configuration kunye ne-TiN njenge-electrode esebenzayo kunye ne-Li njenge-counter and reference electrode.I-SCE yomiswa iintsuku ezi-2 kwibhokisi yeglavu emva kokumisa i-vacuum.
I-ionic conductivity (σi) ye-vacuum-annealed nano-SCE yethu inyuke ngeqhezu lomthamo we-ILE (x ixabiso) njenge-particle composites (fig. S1).Nangona kunjalo, kule meko, i-ionic conductivity igqithise i-ILE ecocekileyo ngokwayo ngaphezu kwe-200% yexabiso eliphezulu x (umzobo 3).Ngaphaya koko, ukuxhomekeka kobushushu be-nano-SCE kunye ne-ion conductivity eyandisiweyo ibonise ukuziphatha okwahlukileyo kune-ILE ecocekileyo: Ngelixa i-Li-TFSI kwi-BMP-TFSI ILE ibonisa utshintsho olucacileyo kwi-conductivity kunye nokusebenza kwamandla (slope) malunga nokunyibilika. iphuzu lomxube kwi-29 ° C, i-nano-SCE ene-conductivity ephuculweyo ayifuni.Endaweni yoko, ibonisa iyantlukwano eqhubekayo kwi-σi kunye nobushushu, ebonisa ukuba uhlobo olungachazwanga lwesigaba okanye i-mesophase luyenziwa, oluthi ke lube noxanduva lokuqhuba kakuhle.Ngaphezu koko, i-slope encinci kwaye ngaloo ndlela isezantsi amandla okuvuselela ukusasazwa kwe-nano-SCE xa kuthelekiswa ne-ILE ibonisa iimpawu zezinto eziphathekayo (umkhiwane. S3).Kucingelwa ukuba intsebenziswano eyomeleleyo phakathi kweeathom ze-ionic zolwelo kunye nomgangatho oqinileyo womkhenkce kwi-silica scaffold inoxanduva lokuziphatha okuqatshelweyo kwe-mesophase, njengoko kuya kuxoxwa ngemodeli ecetywayo engezantsi.
(A) Ukuxhomekeka kobushushu be-conductivity ye-nano-SCEs yomisiwe iintsuku ezisi-8 kwibhokisi yeglavu (GB) enexabiso elingu-x le-2 (izikwere ezimnyama), 1.75 (izangqa eziorenji), 1.5 (onxantathu oblue), kunye ne-1.0 (onxantathu abaluhlaza ) kunye nereferensi ye-ILE (izikwere ezivulekileyo).(B) I-Conductivity ye-nano-SCEs eyongeziweyo yomiswe kwi-GB yeentsuku ze-0 (iikwere eziluhlaza), iintsuku ezili-10 (onxantathu abamnyama), kunye neentsuku ze-138 (onxantathu oblue).(C) I-Conductivity xa ithelekiswa ne-square root yexesha lokumisa le-nano-SCE enexabiso elingu-x lika-2 (izikwere ezimnyama), 1.5 (onxantathu ababhlowu), 1.0 (onxantathu abaluhlaza), kunye ne-0.5 (iidayimani ezimdaka).(D) Ukuqhutywa kwe-nano-SCE ene-x = 2 (izikwere ezimnyama), 1.5 (onxantathu ababhlowu), kunye ne-1.0 (onxantathu abaluhlaza) bavezwe kwigumbi lokufuma elizaliswe yi-N2.
Umoya we-argon kwibhokisi yeglavu iqulethe ngaphantsi kwe-0.1 ppm yamanzi, ehambelana ne-0.0005% RH, uxinzelelo lwamanzi oluyinxenye ye-0.01 Pa, okanye indawo yombethe -88 ° C.Njengoko inani le-adsorbed leleyile zamanzi kwi-silica ye-silanol-terinated i-equilibrium kunye noxinzelelo lwe-fig.Umzobo 3C ubonisa utshintsho kwi-conductivity ye-23 μl ye-nano-SCE njengomsebenzi wexesha lokuhlala kwibhokisi yeglavu.I-ion conductivity iyancipha ngokumisa ide ihluthe kwixabiso elihambelana ne-silica surface ngokulingana kunye noxinzelelo lwamanzi oluyinxenye ye-0.01 Pa kwibhokisi yeglavu.Naphantsi kweemeko ezomileyo ezigqithisileyo zebhokisi yeglavu, ubuncinci, imonolayer eyinxenye yamanzi adsorbed kwi-silanol ikhona, njengoko iRaman spectroscopy isabonisa umqondiso kwi-3524 cm−1, ethe ngqo kwi-monolayer yokuqala yamanzi adsorbed kwi-silanol. (Umfanekiso 4B).I-ion conductivity phantsi kweemeko ezigcweleyo yayingaphantsi kwe-ILE yomntu ngamnye kuzo zonke iimeko.Ke ngoko, ukongezwa akwanelanga ukuhlawulela ilahleko kwi-ionic conductivity ye-ILE evalelweyo kumbindi wepore.
(A) I-IR spectra ye-nano-SCE enexabiso le-x le-1.5 (bomvu), isalathiso se-ILE (emnyama), kunye ne-SiO2 (ebhlowu), ebonisa ukuba iqela le-O═S═O (1231 cm−1) libandakanyeka ukusebenzisana kunye namaqela e-OH kumphezulu we-silica.(B) I-Raman spectra ye-nano-SCE enexabiso elingu-x ka-2 (emnyama), 1.5 (bomvu), kunye no-0.5 (bhlowu), ebonisa ubukho bamanzi omkhenkce adityaniswe kwi-silica enqanyuliweyo ye-silanol nakwi-nano-SCE kufutshane ne-saturation (0.0005 % RH) kwibhokisi yeglavu (iintsuku ezingama-30).(C) Imodeli ecetywayo yentsebenziswano ye-interface kwi-nano-SCE kunye nokuqhawula i-Li-TFSI kwi-Li + yamahhala njengoko i-TFSI-anion yabelana ngenxalenye yentlawulo yayo embi kunye ne-adsorbed ice-TFSI-BMP layer;imibala imele izinto ezahlukeneyo ezimfusa (i-silicon), ebomvu (i-lithium), i-yellow emnyama (isulfure), i-orenji (ioksijini), eluhlaza okwesibhakabhaka (nitrogen), emhlophe (i-hydrogen), kunye nohlaza (i-fluorine).Imigca edayiweyo emfusa imele ibhondi ye-hydrogen phakathi kweqela le-O═S le-TFSI anion kunye ne-OH-amaqela e-hydroxylated silica surface.Ii-ion ze-Li+ ezikhululwa yi-dipole ngaphezulu komgangatho we-adsorbed zinokufuduka ngokulandelelana okuhambayo okanye ukwahlula iileya ze-ionic ezingamanzi ngaphezulu kweeleya zojongano.Qaphela ukuba kuxhomekeke kumandla eebhondi ze-hydrogen kunye nentlawulo elinganayo kwi-silica, i-adsorbed layer ingenziwa kwakhona.I-spectra epheleleyo iboniswe kwifig.S8.
Uqwalaselo olunomdla lubudlelwane bomgca kunye nengcambu yexesha lokumisa njengoko kubonisiwe kwi-Fig. 3C, ebonisa ukuba utshintsho lwe-conductivity luhambelana ngokuthe ngqo notshintsho kwixabiso le-adsorbed yamanzi e-ice kwi-silica kwaye ukususwa kwala manzi angaphezulu. ukusasazwa kulinganiselwe.Qaphela ukuba "ukomisa" kwenzeka kuphela kwindawo evulekileyo apho i-RH iphantsi kunomgangatho we-ice equilibrium.I-conductivity ayizange itshintshe ngokuphawulekayo, umzekelo, kwiiseli ezivaliweyo ezisetyenziselwa imilinganiselo exhomekeke kwiqondo lokushisa.
Ukuxhomekeka kweqondo lokushisa kwe-nano-SCE kwalinganiswa ngamaxesha ahlukeneyo omisa kwibhokisi yeglavu.Njengoko i-conductivity ye-nano-SCE eyomileyo isondela kwi-ILE, i-σi eqhubekayo ngokuchasene ne-1 / T yeeprofayili ze-mesophase conductivity yatshintsha ngokuthe ngcembe kwiprofayili ye-ILE, iphinda ibonise ukuhla okujikeleze indawo yayo yokunyibilika (ifig. S3).Olu qwalaselo luxhasa ngakumbi ingcinga yokuba umaleko womkhenkce usebenza njengomaleko osebenzayo wokusebenzisana ne-ILE, okukhokelela kwindlela yokuziphatha ye-mesophase kwi-nano-SCE.Ke, xa umaleko osebenzayo ususiwe, i-ILE iba nje ivalelwe kwi-mesoporous oxide membrane.
Imilinganiselo yefestile yokuzinza kwe-electrochemical iqinisekisa ukuba amanzi e-ice kwi-nano-SCE azinzileyo, njengoko kungekho zincopho zokunciphisa amanzi okanye i-oxidization yabonwa kwi-electrode ye-inert ye-TiN (umzobo 2) okanye kwi-electrode ye-TiO2 encinci yefilimu, esebenza ngenye indlela. njenge-electro-catalyst yokunciphisa amanzi.Endaweni yoko, ukuzinza kwe-electrochemical ye-nano-SCE kufana kakhulu ne-ILE kwaye ngaloo ndlela kuncitshiswe yi-oxidation ye-TFSI- kumandla we-electrode> 4.3 V kunye nokunciphisa i-TFSI- kunye ne-BMP + kwizinto ezinokwenzeka <1 V versus Li +/Li (33).Ukuthelekisa, i-voltammogram iboniswa kwi-ILE ene-5 ubunzima % (wt%) amanzi ongeziweyo (umxholo ofanayo kunye ne-nano-SCE ethile; jonga i-table S1).Kule meko, isebe le-cathodic lokunciphisa amanzi lilinganiswa ngokukhawuleza emva kwe-Li-intercalation peak ye-anatase kwi-1.5 V ngokumelene ne-Li + / Li.
I-thermal kunye (i-electro) uzinzo lwekhemikhali ye-nano-SCE igqitywe kakhulu yi-ILE filler.Uhlalutyo lwe-Thermogravimetric (TGA) lubonise ukuzinza kwe-thermal ye-SCE kunye ne-ILE ukuya kwi-320 ° C, kungakhathaliseki ukuba i-ILE-to-silica ratio (fig. S4).Ngaphezulu kolu bushushu, i-Li-TFSI kunye ne-BMP-TFSI zibola ngokupheleleyo kumalungu aguquguqukayo, kwaye yi-silica matrix kuphela ehlala malunga ne-450 ° C.Ipesenti yobunzima obuseleyo emva kokubola kwe-thermal ihambelana kakuhle kakhulu neqhezu le-silica kwi-SCE.
I-nano-SCE ayizange ibonise i-microstructure ecacileyo kwi-electron microscopy yokuskena (SEM) ngaphandle kwendawo egudileyo kunye ne-silica patches ekrobileyo (fig. S5).Uxinaniso oluthile lwe-SCE lugqitywe nge-helium pycnometer kwaye yayimalunga ne-1.5 g/cm3 kuwo onke amaxabiso e-x (itheyibhile S1).I-silica matrix epheleleyo ibonakaliswe ngokutsalwa okudinayo kwe-ILE kwi-solvent (jonga i-Materials and Methods).Ngokumisa ngokucophelela kwindawo ebalulekileyo ye-CO2, i-monoliths ye-airgel engaguqukiyo inokufumaneka njengaleyo iboniswe kwi-Fig.Ukuhlolwa kwe-SEM kubonisa i-scaffold ye-silica e-mesoporous ene-10- ukuya kwi-30-nm ye-pore ububanzi, ehlanganiswe kwii-macropores ezinkulu ze-100 ukuya kwi-150 nm, njengoko kunokubonwa kwi-Fig. 1 (B kunye no-C).I-high-resolution electron microscopy (TEM) (i-Fig. 1D) iveze ngakumbi i-microstructure ehlanganiswe ngokusondeleyo kwi-silica nanoparticles.I-avareji ye-particle diameter isuka kwi-7 ukuya kwi-14 nm ye-x ixabiso phakathi kwe-0.5 kunye ne-1.5.
Indawo ethile yendawo [i-Brunauer-Emmett-Teller (BET)], i-porosity, ubukhulu be-pore, kunye nokusabalalisa ubukhulu be-pore kunqunywe ngemilinganiselo ye-N2 ye-adsorption / desorption (itheyibhile S1 kunye ne-fig. S6).Ukuwa kwesakhiwo kunye nokususwa okungaphelelanga kwe-adsorbed ILE kunokungamelanga amanani.Ukutsalwa ngononophelo kolwelo lwe-ionic kunye nokomisa okucothayo kusetyenziswa i-CO2 ephezulu ebonelelweyo, nangona kunjalo, iziphumo ezithembekileyo zisondele kwi-porosity elindelekileyo ebalwa ukusuka kwiqhezu lomthamo we-ILE ukuya kwi-silica (umzobo 1).Ummandla we-BET womphezulu uphakathi kwe-800 kunye ne-1000 m2 / g.Ubungakanani be-pore obuphakathi obufunyenwe kwi-slope ye-isotherm phakathi kwe-7 kunye ne-16 nm.Ukongezelela, inxalenye encinci ye-pores enkulu ukuya kuthi ga kwi-200 nm ilinganiswe (umzobo we-S6), ngokuhambelana nokuqwalaselwa kwe-SEM.Idayamitha ye-pore ihambelana kakuhle ngokuphindwe kabini ubukhulu obulinganayo bomaleko we-ILE ofunyenwe kwiqhezu levolumu ye-ILE kunye nommandla we-BET womphezulu, oku kuthetha ukuba i-mesopores izaliswe ngokupheleleyo nge-ILE.
Ummandla we-BET oxeliweyo wenzelwe i-mesopores kunye ne-macropores kuphela.Kwi-acetone-rised matrix, i-micropores (~ 0.6 nm) nayo yalinganiswa.I-micropores ifunyenwe phakathi kwe-silica nanoparticles nganye eyenza isakhiwo njengoko kuboniswe kumfanekiso we-TEM we-Fig 1D.Ubuninzi bomhlaba owongezelelweyo phakathi kwe-650 (x = 0.5) kunye ne-360 m2 / g (x = 1.5) kuqikelelwa (itheyibhile S1).
Zombini i-FTIR kunye ne-Raman spectra zibonisa ubungqina obucacileyo bamaqela e-silanol aneemolekyuli zamanzi e-ice adsorbed kwi-high-porosity silica matrix eneendawo ezisebenza ngokugqithiseleyo ezingaphezulu kwe-1400 m2 / g xa kuthathelwa ingqalelo i-micropores, i-mesopores, kunye ne-macropores.Phakathi kwe-zero kunye ne-monolayers ezintathu zamanzi ziqikelelwa ukusuka kumanzi angaphezulu kwi-nano-SCE ye-x <1.75.Kwi-silica ecwangcisiweyo, i-monolayers ezintathu zokuqala zamanzi e-adsorbed ngokwenene zithathwa njenge-immobile kunye ne-slid-like ngenxa ye-hydrogen bonding yabo eyomeleleyo kumphezulu ogqityiweyo we-OH (32) (jonga umzobo S2).Ukolulwa kwe-O─H ehambelana ne-silanol hydrogen edityaniswe kwi-ice water layer ifumaneka kwi-3540 cm-1 kwi-spectra ye-FTIR.Zonke ii-nano-SCEs zibonisa, ngokwenene, incopho eyahlukileyo kwi-3540 cm−1 yamanzi omkhenkce emva kokumisa i-vacuum nasemva kokumisa ngakumbi kwibhokisi yeglavu (Umfanekiso 2).Nangona i-nano-SCE elinganayo kwi-0.0005% ye-RH (ibhokisi yeglavu), i-Raman spectroscopy isabonisa ubukho ubuncinane be-monolayer (Fig. 4B).I-monolayer yesine kwi-silica ecwangcisiweyo ikholelwa ukuba ngumaleko oguqukayo, oku kuthetha ukuba isabhengezwa kwaye ithintelwe kodwa ingaba nokuhamba okuthile.Ukususela kuluhlu lwesihlanu ukuya phambili, amanzi ayahamba kwaye afane nolwelo.Amanzi afana nolwelo aya kubonakala kumanani amaza aphezulu kwi-FTIR spectrum ngenxa yeqondo elisezantsi le-H-bonding kumanzi angamanzi.Kwi-nano-SCE evezwe kwi-60% RH, i-3540-cm−1peak ngokwenene ibonisa ii-vibrations ezongezelelweyo ezitshintshelwe kumanani aphezulu amaza ngenxa yolwelo olongezelelweyo lwe-adsorbed.Umdla kulo mba luvavanyo apho isampuli yavezwa kwi-30% ye-RH, njengoko kungekho manzi angamalwelo asalindelweyo kwi-silica kobu bumanzi (umkhiwane S2).Kule sampuli, kuphela yi-3540 cm−1 incopho yamanzi omkhenkce ebonwa kwi-FTIR.Ukongeza, akukho ncopho yamanzi yasimahla ifunyenwe kwi-1635 cm−1 nasemva kweentsuku ezi-4 kwi-30% ye-RH.Oku kuthetha ukuba amanzi awathathwanga yi-hygroscopic Li-TFSI echithwe kwi-hydrophobic BMP-TFSI emva kokuba i-nano-SCE yomiswe ngonyango lwe-vacuum.Ngoko ke, nawaphi na amanzi angaphezulu kwi-SCE aya kubhengezwa kwi-OH-terinated silica surface.Ke, malunga ne-silica ecwangcisiweyo, i-silica matrix ye-SCE ikwi-equilibrium kunye noxinzelelo oluyinxenye lwamanzi kwindawo engqongileyo.
Ukuvavanya le ngcamango ngakumbi, i-ion conductivity ye-nano-SCE (x = 1, 1.5, kunye ne-2) ilinganiswe kwi-% RH;iisampulu zavezwa kumxube olawulwayo werhasi ye-N2 eyomileyo nefumileyo kwibhokisi yeglavu kangangeentsuku ezi-2 ukuvumela ukugutyungelwa kwamanzi adsorbed ukufikelela kwi-equilibrium (Fig. 3D).Kumanqaku e-~0% RH, i-conductivity ye-nano-SCE elinganayo kwibhokisi yeglavu ithathwe.Okumangalisayo kukuba, i-ion conductivity ngokuchasene ne-RH (%) iprofayili ilandele ukuziphatha okulindelweyo kwi-adsorption yamanzi kwi-silica ecwangcisiweyo (umkhiwane S2).Phakathi kwe-0 kunye ne-30% ye-RH, i-conductivity yanda ngokunyuka kwe-RH.njengoko kulindelekile ekwandeni koxinano lwe-adsorbed umaleko womkhenkce kunye nobungqingqwa (ohambelana nenye ukuya kwezintathu zomaleko womkhenkce kwi-silica ecwangcisiweyo).Qaphela ukuba i-FTIR ibonise ukuba akukho manzi akhululekile akhoyo kwi-nano-SCE iintsuku eziliqela kwi-30% ye-RH.Utshintsho lubonwa malunga ne-50% ye-RH, ehambelana neemeko apho i-transitional adsorbed water layer ilindeleke kwi-silica ecwangcisiweyo.Ekugqibeleni, ukonyuka okwahlukileyo kokuhamba kwe-ion kufunyenwe ukuya kuthi ga kwi-60% kunye nokufuma okuphezulu apho, ngokufana ne-silica ecwangcisiweyo, ngoku, kunye nomaleko wamanzi afana nolwelo kunokwenzeka ukuba lwenziwe kumdibaniso phakathi kwesilica kunye ne-ILE edibeneyo.Nge-FTIR, umaleko wamanzi angamalwelo kumqolo womkhenkce ngoku uchongiwe ngokutshintsha kwe-silanol/umkhenkce/incopho yokungcangcazela kwamanzi ukuya kumandla aphezulu (Umfanekiso 2A).Utshintsho oluphawulweyo kwi-conductivity luguqulwa;ngoko, i-nano-SCE inokusebenza njengenzwa yokufuma kunye ne-electrolyte ye-Li-ion.Ukusuka kwi-Fig. 3D, i-ion conductivity ye-nano-SCE ngokukhawuleza emva kwe-vacuum anneal ihambelana ne-equilibrium hydrated silica ye ~ 10% RH.I-ion conductivity ye-saturation kwiimeko zegumbi elomileyo (~ 0.5% RH) iya kuba malunga ne-0.6 mS / cm (for x = 2).Olu vavanyo lubonisa ngokucacileyo umphumo wamanzi adibeneyo kwi-ion conductivity.Kwi-RH> 60%, i-ion conductivity ephezulu inokuchazwa ngokusasazwa ngokukhawuleza kwe-Li+ enyibilikisiweyo ngomaleko onjengolwelo.Nangona kunjalo, kwimeko yomaleko womkhenkce owomeleleyo, ukusasazwa kwe-Li+ ion kuya kuba luhlobo oluqinileyo lolwelo kwaye lucothe ngakumbi kunolwelo lwe-ionic ngokwalo.Endaweni yoko, ukongezwa kubangelwe kubhengezo oluphuculweyo lwee-anion eziphilayo kunye ne-cations ye-Li-tyuwa kunye ne-ionic iimolekyuli zolwelo, njengoko kucetywayo kwimodeli engezantsi.
Siphakamisa imodeli apho iamolekyuli ze-ionic liquid adsorbed kwi-silica surface ngokusebenzisa iibhulorho ze-H kunye ne-immobile ice layer kumaqela e-silanol (umzobo 4).Ubume bendalo ye-hydrolysis yokujiya kwe-condensation ibonelela ngobuninzi be-silanol (4 × 1014 ukuya kwi-8 × 1014 cm-2, ehambelana kakuhle noxinano lwe-monolayer yomkhenkce kunye ne ~ 8 × 1014 iimolekyuli zamanzi kwi-cm2) (34).Ubungqina bentsebenziswano yeemolekyuli phakathi kweeathom ze-O ze-anion ze-TFSI kunye ne-silica zinikwa yi-FTIR, ebonisa ukuphindwa kabini kwe-O═S═O incopho yazo zonke ii-nano-SCE xa kuthelekiswa nesalathiso se-ILE (Umfanekiso we-4A; i-spectra epheleleyo kwi fig.Ukutshintshwa kwencopho eyongezelelweyo malunga no-−5 cm−1 ukusuka kwi-1231 cm−1 kubonisa ukudityaniswa kwamaqela e-O═S═O ubuncinane inxalenye yee-anion ze-TFSI.Ngoko ke, ukudibanisa i-H ye-TFSI anions kuluhlu lwamanzi e-ice kuthathwa.Emva koko, i-hydrophobic BMP cations enkulu inxulumana ne-TFSI umaleko wokuqala, igqibezela umaleko wokuqala we-adsorbed yeemolekyuli zolwelo ze-ionic.Ngokuphathelele umaleko womkhenkce, iimolekyuli ze-BMP-TFSI ezibhengeziweyo zicingelwa ukuba azishukumi, ngaloo ndlela zandisa umaleko womkhenkce oqinileyo kumphezulu wesilica.Njengoko i-anion ye-TFSI ine-symmetric O═S═O yeqela, i-athomu enye ye-oksijini inokusebenzisana ne-hydroxylated silica surface ngelixa enye ibumba iindawo zokubambelela kwii-cations ze-BMP.I-anion ye-TFSI nayo inamaqela amabini e-O═S═O, eqinisekisa i-adsorption eqinile kunye ne-dense order ye-anion monolayer.I-Adsorption yeyona nto isebenzayo kwimeko yongqimba lomkhenkce oxineneyo kunye noxinano oluphezulu lwamaqela e-OH njengamanqaku anokuthi abambelele.Kubukho bamaqela e-silanol kuphela, i-adsorption ayinakomelela ngokwaneleyo ukwenza umaleko we-adsorbate oqhubekayo.Ukongeza, inani elikhulayo le-ice monolayers liyaziwa ngokunyusa amandla e-hydrogen bond (35).Qaphela ukuba i-molecular interactions phakathi kwe-BMP cation kunye ne-odolo ye-TFSI ye-monolayer iya kwahluka kulwelo lwe-ionic apho i-anion ye-TFSI inenkululeko yokujikeleza kwaye akukho polarization ukusuka kwindawo engaphantsi.Intlawulo ye-cation enkulu ye-BMP isasazwe ngaphezulu kwe-athomu ezininzi nge-polarization ye-intrinsic bond kunye nokunxibelelana kweemolekyuli kunye nemekobume yeekhemikhali kwaye, ngokukodwa, i-adsorbed TFSI anion.I-H-bonding phakathi kwe-O-iqela le-anion ye-TFSI kunye ne-OH-ukupheliswa komgangatho womkhenkce ngoku kwazisa i-dipole phezu komgangatho wokuqala we-adsorbed, ukukhuthaza ukulandelelana kwe-molecular ngombutho.Kukholelwa ukuba ngeli xesha, iimolekyuli ezincinci ze-Li-TFSI zibhengeza kumaleko emolekyuli apho i-TFSI anion ngoku ibuyisela intlawulo eyintsalela yedipholar ye-cations enye okanye ngaphezulu kwe-BMP kumaleko angaphezulu, kungoko ikhulula unxulumano lwayo kunye ne-Li. ion.Ngale ndlela, ugxininiso lwe-Li + yasimahla yonyuka kolu jongano, ekhokelela ekuqhubeni okuphezulu kwe-ion.Yiyo loo nto, ingqimba yomkhenkce eshinyeneyo kunye nengqindilili emva koko yazisa i-dipole enkulu enentlawulo ephezulu yentsalela yokubuyisela, inika i-concentration ye-Li+ ephezulu ngokulinganayo kwaye ngaloo ndlela i-ion conductivity.
Ngaphezulu kwe-adsorbed ILE umaleko, nokuba ngomnye umaleko we-ILE unokubhengeza ngokufana nee-multilayers zomkhenkce kwi-silica okanye ukutsalwa kwe-dipole yomaleko womkhenkce kubuthathaka kakhulu kwaye i-ILE ebotshelelwe kancinane ingaphezulu, enokuthi ke ibonelele ngokuqhutywa kolwelo. i-Li + ion ekhutshwe kuluhlu olusezantsi lwe-adsorbed (Umfanekiso we-4C).Utshintsho kwi-concentration ye-Li + ion yamahhala yaqinisekiswa zombini i-NMR kunye ne-Raman spectroscopy imilinganiselo.Imilinganiselo yeRaman ngokungangqalanga ibonisa ukuba iqhezu elikhulu leeyoni ze-Li + zamahhala zikhona ngokwenene kwi-nano-SCE kunye neengqimba ezininzi zamanzi omkhenkce ezibophelelwe kwi-silica (umzobo 5).I-Raman ilinganisa unxulumano lwe-cation kunye ne-TFSI ngokujonga ukungcangcazela kweqela le-N le-anion ye-TFSI (36).Kulwelo olusulungekileyo lwe-ionic ye-BMP-TFSI, kubonwa kuphela incopho enye kwi-741 cm−1.Kwimeko ye-ILE ecocekileyo, i-peak eyongezelelweyo ibonakala kwi-746 cm-1 apho ii-anion ezimbini ze-TFSI zilungelelanisa kunye ne-Li + ion enye [jonga izibalo ze-density functional theory (DFT) kwi-Materials and Methods].Kuzo zonke ii-nano-SCEs, ubukhulu bencopho kwi-746 cm−1 bubuthathaka kune-ILE, ebonisa iqhezu elincinci le-Li-TFSI ehambelanayo kwaye, ngenxa yoko, iqhezu elikhulu lee-cations ezingabandakanyiyo okanye ezikhululekile ze-Li +.Incopho yehla kakhulu kwezo nano-SCE ebonisa eyona conductivity iphezulu yophuculo, oko kukuthi, ezo zinamaleko omkhenkce angqindilili.Kwi-nano-SCE kwi-equilibrium kwibhokisi yeglavu, kunjalo, iqhezu le-Li + yamahhala ilinganiswa nangona incinci kakhulu kuneesampuli ezifakwe kwi-vacuum-annealed.Umlinganiselo wokuqina kwe-746 ngaphezulu kwe-741 cm−1 Raman shifts ngoko ngumlinganiselo womlinganiselo we-free to TFSI-associated Li-ions (Fig. 5B).Ukonyuka komgca kwiqhezu le-ion elisimahla le-Li+ elinexabiso elingu-x lilandela kakuhle intsingiselo yophuculo lwe-conductivity kunye nexabiso le-x kwi-Fig. 3B, zombini i-vacuum eyomileyo ye-nano-SCE (usuku 0) kunye ne-SCE ngokulingana kunye nokoma kwebhokisi yeglavu (usuku 138).
(A) I-Raman spectra yolwelo lwe-ionic (IL; umgca oluhlaza onamachokoza) kunye nereferensi ye-ILE (ILE; umgca onamachaphaza angamachaphaza) njenge-nano-SCE elungisiweyo (ivacuum eyomisiweyo) enexabiso elingu-x lika-0.5 (luhlaza), 1.5 (tyheli) , kunye ne-2 (brown) kunye ne-nano-SCE (x = 1.5) eyongezelelweyo yomiswe kwibhokisi yeglavu kwiintsuku ze-30 okanye i-saturation ekufutshane kwi-0.0005% RH (ebomvu).Imigca ethe nkqo ilebhile iRaman shift ye-TFSI neziko layo le-N elilungelelaniswe ukuya ku-Li+ (746 cm−1) kwaye ayilungelelaniswanga ku-Li+ (741 cm−1), ngokulandelelanayo.(B) Umlinganiselo wasimahla wokulungelelaniswa kwe-Li + ye-nano-SCE njengoko idityanisiwe (i-vacuum eyomisiweyo, izangqa ezimnyama) kunye nezomisiweyo kwiibhokisi zeglavu kunye ne-0.0005% RH kangangeentsuku ezingama-30 (iidayimani ezibhlowu), ehambelana nomlinganiselo wokuqina okudibeneyo Iincopho zeRaman (746 cm−1 ngaphezu kwama-741 cm−1).(C) PFG-NMR-ephuma kwi-Li + self-diffusion coefficient ye-nano-SCE (iidayimani ezibomvu) kunye ne-ILE ref.(izikwere ezimnyama) njengomsebenzi wesithuba phakathi kwemithamo yemagnethi yomhlaba wokuthambeka.Iincopho zethiyori kwi-Raman spectra ziye zalinganiswa kusetyenziswa ubalo lwe-DFT.
Ukusuka kwi-pulsed-field gradient NMR (PFG-NMR), i-coefficient yokwahlula-hlula kweentlobo ezahlukeneyo ze-Li-ion eziphathwayo zamiselwa njengomsebenzi wesithuba phakathi kwe-gradient magnetic field pulses ∆ yereferensi yolwelo ye-ILE kunye ne-nano- I-SCE (x = 1.5) kunye ne-ion conductivity efanayo ye-0.6 mS / cm (umzobo 5C).I-Li + i-self-diffusion coefficient kwireferensi ye-ILE yayingatshintshi, ibonisa ukuba enye kuphela okanye iindidi ezininzi ze-Li ezinokuhamba okufanayo zikhoyo kulwelo.Kwi-nano-SCE, i-self-diffusion coefficient yahluka nge-∆ kwaye yadlula i-ILE ngokufutshane ∆, ebonisa ubukho beentlobo ezihamba ngokukhawuleza eziphendula kuphela ngexesha elifutshane phakathi kwee-pulses zamagnetic field.I-gradient ku-self-diffusion coefficient icebisa ukuba kufutshane nokwanda koxinzelelo lwe-Li-ion yasimahla, njengoko kuthatyathwe kwi-Raman spectroscopy, amandla okusebenza okusasazwa athotywe kumaleko wojongano lwe-mesophase ngokunjalo.Oku kuxhasa uphuculo lwe-conductivity olwenziwa yi (ngaphezulu) i-Li+ ion zasimahla kumaleko we-mesophase.Kwixesha elide ∆, i-coefficient yokusasaza ngokwayo ibingaphantsi kunereferensi ye-ILE.Oku kuqinisekisa ukuhanjiswa kwe-ion esezantsi kakhulu kwibhokisi yeglavu-egcwele i-nano-SCE xa kuthelekiswa ne-ILE.I-ILE evalelwe kwi-core ye-mesopores iya kuba ne-viscosity ephezulu ngenxa yokuthintelwa kwentshukumo ye-molecular.Ke ngoko, ukongezwa ngokudala ukusasazwa kwe-Li-ion ngokukhawuleza kwisilica/umkhenkce/i-ILE ujongano kufuneka kuhlawule kakhulu ukuhla kokuqhuba kumbindi wepore.Oku kuchaza ukungabikho kophuculo kwiinkqubo ezisekelwe kwiinqununu apho i-interfaces ayiboneleli ngokwaneleyo ukukhuthazwa kwe-ion conduction (umzobo S1).
Ukuzinza kwe-electrochemical ye-nano-SCE ngokuchasene nentsimbi ye-lithium yavavanywa kusetyenziswa ukuseta i-electrode emithathu (isicwangciso sokuseta siboniswe kumfanekiso we-S7).Uphawu olukhoyo lwangoku lwe-Li / SCE (x = 1.5) kunye ne-Li / ILE i-half-cell iboniswe kwi-Fig. 6A.Ngokuphathelele ifestile ye-electrochemical kwi-Fig. 2, i-electrochemistry inqunyelwe yi-ILE filler.Ukuguqulwa kwe-lithium plating kunye nokuhluthwa kuyabonwa.Umaleko ozinzileyo we-electrolyte interphase (SEI) wenziwa kwi-metallic lithium ene-RSEI emalunga ne-0.9 kilo-ohm·cm2, enoxanduva lokuhla okukhulu kwe-IR kwijiko le-iU kumacala omabini we-cathodic kunye ne-anodic.I-cathodic current kwi-ILE solutions ecocekileyo ayizange ibonise nayiphi na i-hysteresis phantsi -2.5 mA / cm2.Nangona kunjalo, i-anodic dissolution ibonise i-passivation incopho kunye ne-inodic current ezinzileyo ye-0.06 mA / cm2 kuphela.Isebe langoku le-cathodic kwi-solid-solid Li / SCE interface ayibonisi i-hysteresis ye-cathodic currents engaphantsi kwe--0.5 mA / cm2.Ukuchasana kwe-SEI, nangona kunjalo, malunga nokuphindwe kabini.Ngokufanayo, i-anodic peak yayiphantsi kwaye i-steady-state current emva kwe-anodic passivation peak yayingu-0.03 mA / cm2, kuphela isiqingatha sesisombululo se-ILE esicocekileyo.Ukuqulunqwa kwe-SEI kunye neengqimba zokugqithisa kwi-pores ye-SCE imida yangoku kwi-lithium metal.Zombini ii-voltammograms ze-Li / ILE kunye ne-Li / SCE i-electrode ziye zaphinda zaveliswa kwimijikelezo emininzi, ebonisa ukuba i-anodic passivation layer kunye ne-chemical layer ye-SEI iyabuyiswa kwaye izinzile.I-kinetics yokuchithwa okucothayo kwi-interface ye-Li / SCE inciphisa kakhulu ukusebenza kweeseli zesiqingatha ezenziwe nge-Li metal anodes ngezantsi.
(A) I-voltammogram ye-cyclic ye-nano-SCE (x = 1.5, njengoko yenziwe emva kokumisa i-vacuum) (obomvu) kunye nesalathiso se-ILE (emnyama) silinganiswe kwi-electrode emithathu-e-electrode kunye ne-Li njengomsebenzi, i-counter, kunye ne-electrodes yereferensi (ukuchasana kwe-SEI kuqikelelwa ukusuka Ukuhla kwe-IR kwi-cathodic current yi-0.9 kunye ne-1.8 kilo-ohm · cm2 ye-ILE kunye ne-SCE, ngokulandelanayo).(B) Ukuhlawuliswa kwe-galvanic / ukukhupha i-curves ye-Li / SCE (x = 1) / i-100-nm i-thin-film i-LiMn2O4 iseli kwiimjikelezo ezintlanu kwi-C-rates ye-1C, i-5C, kunye ne-20C.(C) I-cyclic voltammograms ye-Li / SCE / 40-μm Li4Ti5O12 kunye ne-Li / SCE / 30-μm LiFePO4 iiseli ze-electrode powder (1 mV / s).(D) Intlawulo ye-galvanic / i-curves yokukhupha i-Li / SCE / 40-μm Li4Ti5O12 powder electrode kwi-1C, 0.1C, 0.2C, kunye ne-0.02C.(E) Intlawulo ye-galvanic / i-curves yokukhupha i-Li / SCE / 30-μm LiFePO4 powder electrode kwi-1C, 0.5C, 0.2C, 0.1C, 0.05C, kunye ne-0.01C.(F) Umthamo (iidayimani ezizaliswe yi-delithiation kunye nezikwere ezivulekileyo ze-lithiation) ngokuchasene nenani lomjikelezo we-Li / SCE / 30-μm LiFePO4 powder electrode;ubukhulu be-SCE kwiiseli malunga ne-280 μm.Ubuninzi be-LFP kunye ne-LTO cathode malunga ne-1.9 kunye ne-11.0 mg / cm2, ngokulandelanayo.(G) Okunokwenzeka xa kuthelekiswa nexesha leegophe ze-Li/SCE/Li stack ezijikelezwe ngokuxinana kwangoku kwe-0.1, 0.2, 0.5, kunye ne-0.1 mA/cm2.(H) I-1st, i-10, i-125, kunye ne-polarization yokugqibela ye-stack ye-Li / SCE / Li igxininiswe kwi-0.1 mA / cm2, eboniswe kwi (G).Ku (G) kunye (H), i-SCE ine-conductivity ye-0. 34 mS / cm, kunye nobukhulu be-pellet ye-SCE yi-0.152 cm.
I-100-nm LiMn2O4 (LMO) ifilimu encinci isetyenziswe njengemodeli ye-electrode efanelekileyo ukuvavanya zombini ukuzinza kwe-nano-SCE kunye nezinto ze-electrode ngelixa ususa imiba enokuthi ibekho kwi-interface ekhoyo kwi-electrode edibeneyo ye-particle (37).Ukusebenza kwebhayisikili ye-electrode yefilimu / i-SCE stack encinci ibonisa ukuzinza kwe-interface phakathi kwe-electrode kunye ne-electrolyte.Kulo mzekelo wokuseta ifilimu ebhityileyo, inye kuphela, ichazwe kakuhle, kunye nonxibelelwano olucwangcisiweyo olukhoyo phakathi kwe-electrolyte kunye ne-electrode, oko kukuthi, liqonga elifanelekileyo lokufunda i-electrochemistry ye-electrolyte/electrode interface ngaphandle kwemiba yokutshintsha umthamo. , njl njl. Kwakhona kolu vavanyo, ukusebenza kwesantya akunqunyelwe yi-Li-foil counter electrode, njengoko ubuninzi bangoku (6 μA / cm2 ye-1C) bungaphantsi kwe-anodic ye-anodic yangoku kwi-plateau ye-lithium isiqingatha-. iseli (0.03 mA/cm2).I-reproducible and stable charge / discharge curves ifunyenwe kwi-cutoff voltage kwi-4.3 V ye-C-rates phakathi kwe-1 kunye ne-20C ngaphezu kwemijikelezo ye-20 (umzobo 6B).I-LMO ayizinzanga kulwelo lwe-electrolyte ye-LiB.Umzekelo, ukucutha umthamo we-50% kwabonwa kwintlawulo yefilimu ye-100-nm ye-LMO-ekhutshwe kwimijikelo eli-10 kwi-LiClO4/propylene carbonate electrolyte kwi-1C (37).Iziphumo zethu zibonisa ukuba i-nano-SCE ihambelana kakhulu ne-LMO kune-electrolyte yolwelo oluqhelekileyo.
Ukubonisa ukuhlanganiswa kwe-nano-SCE, senze kwakhona i-half-cells kunye ne-Li4Ti5O12 (LTO) kunye ne-LiFePO4 (LFP) i-powder electrodes.Isisombululo se-precursor saye saphoswa kwi-cell cell ukuze kufakwe i-electrodes e-porous kwaye ishiywe kwi-gelation eyongezelelweyo ngaphambi kokuba yomiswe kwaye i-vacuum-annealed ngokufanayo njenge-pellets ye-nano-SCE.Iiseli zibonisa iimpawu ze-lithiation / delithiation ye-electrodes ehambelanayo (umzobo 6C).Imisinga esezantsi yencopho ye-LFP kune-LTO kungenxa yomahluko kubunzima bokugquma.Ukusebenza kwezinga ngexesha lokulinganisa intlawulo / ukukhutshwa ngoku kwakhawulwa yi-Li-foil counter electrode ecinezelwe kwi-nano-SCE layer eyenziwe phezulu kwe-30- ukuya kwi-40-μm-engqingqwa ye-electrode coatings (umzobo 6, D kunye no-E).Iseli ye-LTO/nano-SCE/Li ifikelele kumthamo wayo omkhulu we-160 mA·hour/g kuphela kwi-C-rate ephantsi ye-0.02C (Fig. 6D).Umthamo ofikelelekayo wehla ngokukhawuleza nge-C-reyithi engaphantsi kwe-10% kumazinga e-C amakhulu kuno-0.1C.Ngokufanayo, i-LFP / SCE / Li iseli ifikelele kumthamo wayo ophezulu malunga ne-140 mA · iyure / g kwi-0.01C (Fig. 6E).Umzobo we-6F ubonisa ukusebenza kwezinga kwimijikelezo ye-30 iyonke, ebonisa ukucwangciswa kweeseli ezizinzileyo.Olu vavanyo lubonisa ukusebenza kwe-nano-SCE njenge-electrolyte ye-Li-ion kunye nokuba nokwenzeka kokuhlanganiswa kwiiseli ze-Li-ion.
Ukuzinza okanye ukujikeleza kwe-nano-SCE kwavavanywa kusetyenziswa i-Li/SCE/Li stack symmetric.Ibiyelwe ngeebhayisekile ezingaphezu kwee-120 kwimijikelezo yoxinzelelo lwangoku lwe-0.1 mA / cm2 kwiiyure ze-0.5 (umzobo we-6G) ngaphandle kwemiba okanye ukubunjwa kwe-dendrite (Fig. 6H).Umbane wepolarization waba mncinci ngokuhamba kwexesha, ebonisa ukuphuculwa koqhagamshelwano.Ngaphezu koko, iseli yayigxininiswe ukuya kuxinzelelo lwangoku lwe-0.5 mA / cm2, ngaphandle kokubunjwa kwe-lithium dendrites okanye iimpawu zokuwohloka kwe-nano-SCE okanye i-interface (Fig. 6G).I-metallic lithium iyaziwa ngokwenza umaleko we-interphase okhuselayo okanye i-SEI kumphezulu wayo kwi-BMP-TFSI-based ILEs (27).Oku kusabela kwenzeka kwakhona kwi-lithium/nano-SCE ujongano;njengoko kuxoxwe phantsi kwe-Fig. 6A, i-SEI inokukhula kancinci ngaphakathi kwee-pores, ichaza ukuchasana kwe-SEI ephezulu ye-nano-SCE kune-ILE (jonga ngasentla).Ubungqina bomaleko we-SEI bufunyenwe kwi-IR spectra (fig. S9).Ngokufana ne-SEI yokwambathisa kwi-LiB yakudala, ekhusela i-electrode yegraphite ukusuka kulwelo lwe-electrolyte ukuphepha ukusabela okungaphezulu, sikholelwa ukuba i-SEI apha ikwakhusela umaleko wamanzi omkhenkce kwimpendulo eyongezelelweyo evela kwi-anode ye-metallic lithium.I-Impedance spectra ngaphambi nangemva kwe-polarization ye-Li / nano-SCE (x = 1.5) kwiiyure ze-10 ayizange ibonise naluphi na utshintsho kwi-bulk electrolyte resistance.Imilinganiselo yokusebenza yebhayisikile ende iya kufuneka ukuba ingabandakanyi ukomiswa okucothayo kwe-nano-SCE ngesinyithi se-lithium, kodwa ezi ziphumo sele zibonisa amandla ayo okuhamba ngokugqwesileyo kwe-SCE kwiibhetri ze-lithium metal-based solid-state.Nangona kunjalo, i-interphase coatings eyenziweyo inokuthathelwa ingqalelo ekuphuculeni i-impedance yojongano ngokupheleleyo.
Siye sabonisa ukuba ukukhuthazwa kwe-ion conduction kwi-silica interfaces kunokufezekiswa ngokungeniswa komgangatho wamanzi we-chemisorbed kwi-OH-terinated silica surfaces.I-TFSI anions chemisorb kulo maleko osebenzayo wamanzi ngokusebenzisa i-hydrogen bonding kunye ne-symmetric O═S═O iqela.Umaleko womphezulu wamanzi awushukumi kwaye yiyo loo nto uqhobosha umaleko we-adsorbed we-TFSI kumphezulu.I-cations enkulu ye-BMP inxulumana ne-TFSI monolayer, ngaloo ndlela ingenisa ulandelelwano lwemolekyuli ye-TFSI-BMP kumphezulu.Sikholelwa ukuba i-gelation ecothayo kwindawo enamanzi kunye nokomisa okucothayo kunceda ekuqulunqweni okudibeneyo koluhlu lwamanzi olusebenzayo kunye noluhlu olucwangcisiweyo lwe-ion eziphilayo phezu kwayo.Njengoko i-TFSI anion layer yokuqala yabelana ngenxalenye yentlawulo yayo engalunganga kunye ne-silica ye-hydroxylated, umaleko we-BMP we-cation phezulu uya kufuna ukudibanisa nenye i-anion ye-TFSI, apho i-BMP eninzi inokwabelana ngentlawulo yabo engahlawulwanga nge-TFSI enye (mhlawumbi ezintathu ukuya kwenye njengakwi umlinganiselo we-IL ukuya kwi-Li-TFSI kwi-ILE).Njengoko iimolekyuli zetyuwa ze-Li-TFSI zineyona ndlela ikufutshane, ii-ion ze-Li+ ziyakuhlukana kwaye zikhululeke ukuba zisasazeke ngokukhawuleza kulo maleko wojongano.Ukuqhuba okuphuculweyo, ezi ntlobo zasimahla ze-Li+ zifuna ubuncinci umaleko omnye wolwelo we-ayoni ukuze uhambe.Ngenxa yesi sizathu, i-nano-SCE enexabiso eliphantsi le-x ye-0.5 ibonise ukuba akukho conductivity ephuculweyo, njengoko umthamo we-ILE / indawo ye-silica yanele kwi-monolayer enye evaliweyo.
Kwaphinda kwaboniswa ukuba amanzi angaphezulu okuqinileyo okufana nomphezulu okanye umaleko womkhenkce awusebenzi ngokwe-electrochemically.Ngeli xesha, asikwazi ukungabandakanyi ukuba amanzi e-ice adibanisa ngokuthe ngqo kunye ne-electrode surface ayiphenduli.Nangona kunjalo, sibonise ukuba ukusasazwa ngaphandle kwamanzi angaphezulu kuyacotha kwaye ngenxa yoko akunakwenzeka ukubonwa.Siyaqonda ukuba ukungcoliswa kwamanzi, nokuba kuncinci, kuya kuhlala kuyinkxalabo, kwaye iimvavanyo zomjikelo wobomi obude kuphela zinokunika impendulo eqinisekileyo malunga nokuba amanzi abotshwe ngokwaneleyo.Nangona kunjalo, ezinye iileya zomphezulu ezisebenzayo ezinikezela ngokufanayo okanye ezinkulu ngakumbi kumphezulu ngoku zinokuphuhliswa.Kule nkalo, iqela likaLi sele libonise amandla omgangatho we-glycidyloxypropyl njengeqela elisebenzayo (18).Amanzi omkhenkce avela kwi-silica kwaye ngoko ke afanelekele ukufunda isiphumo sokusebenza komphezulu kwi-ion conduction promotion ngokucwangcisiweyo, njengoko kubonisiwe ngempumelelo apha.Ukongezelela, i-mesophase layer kunye ne-dipole yayo iya kuxhomekeka kwi-oxide kunye ne-adsorbed organic molecules kwaye ngoko inokulungiswa zombini.Kwibhubhoratri, sele sibonise umahluko omkhulu kwi-ion conduction promotion for different liquids ionic.Ngaphaya koko, umgaqo obonisiweyo ungowohlobo oluqhelekileyo malunga ne-ion conduction kwaye unokuthi ngokunjalo usetyenziswe kwiinkqubo ze-ion ezahlukeneyo ezifanelekileyo, umzekelo, kwiibhetri zesodium, i-magnesium, i-calcium, okanye i-aluminiyam ion.Ukuqukumbela, i-electrolyte ye-nanocomposite ene-interface conduction eboniswe apha yingcamango kunokuba ibe yinto enye, enokuthi iqhubeke (i-nano) iphuculwe kwiipropati ezinqwenelekayo ze-ion conduction, inombolo yokuthutha, ifestile ye-electrochemical, ukhuseleko, kunye neendleko zezizukulwana zebhetri ezizayo. .
I-nano-SCE yalungiswa ngokusebenzisa indlela ye-sol-gel.I-Lithium bis(trifluoromethylsulfonyl)imide Li-TFSI;Sigma-Aldrich;I-99.95%), i-0.5 ml ye-H2O ye-deionized, i-0.5 ml ye-TEOS (Sigma-Aldrich; 99.0%), i-1-butyl-1-methylpyrrolidinium bis (trifluoromethylsulfonyl) imide (BMP-TFSI; Sigma-Aldrich; 98.5%), kunye ne-98.5%). ml ye-PGME yaxutywa kwivial yeglasi.Umyinge we-molar, x, phakathi kwe- [BMP][TFSI] kunye ne-TEOS kumxube yahluke phakathi kwe-0.25 kunye ne-2. Umlinganiselo we-molar ye-Li [TFSI] kunye ne- [BMP][TFSI] ilungiswe kwi-0.33: 1.Izixa-mali ze-Li[TFSI] kunye ne- [BMP][TFSI] zamiselwa kolu luhlu.Umzekelo, xa i-x = 1, eyongeziweyo [BMP][TFSI] kunye ne-Li[TFSI] kwisisombululo yayingu-0.97 kunye ne-0.22 g, ngokulandelanayo.Imixube yayishukunyiswa kwi-1 min ukwenza izisombululo ze-monophasic.Ezi zisombululo zaye zagcinwa kwiibhotile ezivaliweyo ngaphandle kokuvuselela ukwenza ii-gel kwindawo yokushisa kunye ne-humidity-controlled room (SH-641, ESPEC Corp.) kunye neqondo lokushisa kunye ne-RH% ebekwe kwi-25 ° C kunye ne-50%, ngokulandelanayo.Ngokuxhomekeke kwi-x, imixube ithathe, ngokomyinge, iintsuku ezi-5 ukuya kwezi-9 ukwenza ijeli ecacileyo.Emva kwe-gelation, ii-vials ezine-2.4- ukuya kwi-7.4-ml gel zaqala zomiswa kwi-40 ° C iintsuku ezine ezigcweleyo ngoxinzelelo oluncitshisiweyo oluncinci (80 kPa) kwaye luhanjiswe kwi-oven yokucoca ngeeyure ezingama-72 kwi-25 ° C.Njengoko umswakama oseleyo ususiwe, i-vacuum iyancipha ngokuthe ngcembe ukusuka kuxinzelelo lokuqala malunga ne-50 Pa ukuya kuxinzelelo lokugqibela olungapheliyo lwe-5 Pa emva kosuku lwe-1.Ngenxa yobuninzi bamanzi kunye ne-PGME ekwakufuneka isuswe, iipellets ze-SCE ezifunyenweyo ziye zancipha ukusuka kwi-20% (x = 0.5) ukuya kwi- ~ 50% (x = 2) yomthamo we-gel wokuqala.Ubunzima beegels ezibangelwayo bulinganiswe ngebhalansi ye-semimicro (SM 1245Di-C, VWR).
I-TGA yenziwa kwi-Q5000 IR (i-TA Instruments, i-New Castle, i-DE, i-USA) phantsi kwe-nitrogen.Ngethuba lokulinganisa, iisampulu zifudunyezwe kwi-700 ° C kwizinga lokushisa kwe-2 ° C / min.I-FTIR spectrometry yenziwa kusetyenziswa iBruker Vertex 70 kwinani lamaza ukusuka kwi-4000 ukuya kuma-400 cm−1 kwimo yothumelo.I-pycnometry yenziwa kusetyenziswa iMicromeritics AccuPyc II 1340.
Ukulinganisa i-ionic conductivity, umthamo omncinci we-SCE uthathwe kwi-vial yomama ngaphakathi kwebhokisi yeglavu egcwele i-Ar (0.1-ppm H2O kunye ne-0.1-ppm O2).Ngokumalunga ne-23 μl ye-SCE yazaliswa kwindandatho ye-polytetrafluoroethylene (PTFE) ene-4.34-mm yangaphakathi ububanzi kunye ne-1.57-mm ubude, eyenza i-pellet.I-pellet kwiringi yafakwa phakathi kweedisks ezimbini zentsimbi engatyiwa (SS) (0.2 mm ubukhulu; MTI).Imilinganiselo ye-impedance yenziwe ngokusebenzisa i-PGSTAT302 (i-Metrohm), kunye ne-AC amplitude ye-5 mV kwi-frequency range ukusuka kwi-1 MHz ukuya kwi-1 Hz.I-ion conductivity (σi) yamiselwa ukusuka kwi-high-frequency intercept kunye ne-real axis kwizicwangciso zeNyquist.Emva komlinganiselo we-conductivity, i-pellet ye-nano-SCE yavunyelwa ukuba yome ngakumbi kwibhokisi yeglavu.Ukulinganisa ukuxhomekeka kweqondo lokushisa, izitaki ze-SS / SCE / SS zitywinwe kwi-cell cell.Emva kokutywinwa, i-conductivity yahlala ihleli iintsuku eziliqela (jonga umkhiwane S3).Iqondo lobushushu iseli ngqekembe ilawulwa ibhatyi thermal kunye bath thermal usebenzisa H2O / ethylene glycol njengendawo yokusebenza.Izisele zaqale zapholiswa malunga ne-−15°C zaze emva koko zafudunyezwa ngobulumko ukuya kuma-60°C.
Ukusuka kwipellet nganye ye-nano-SCE, malunga ne-23 μl yangeniswa kwiringi (i-4.34-mm yangaphakathi yedayamitha kunye ne-1.57-mm ubude) kwimilinganiselo yombane ngqo ngaphakathi kwebhokisi yeglavu ezaliswe yi-N2 enokufuma okulawulwayo.Iringi ene-SCE yafakwa phakathi kweediski ezimbini ze-SS (0.2 mm ubukhulu; MTI).Imilinganiselo ye-impedance yenziwa ngokusebenzisa i-PGSTAT302 (i-Metrohm) kunye ne-AC amplitude ye-5 mV kunye ne-frequency ukusuka kwi-1 MHz ukuya kwi-1 Hz elawulwa nge-software ye-Nova.Iisampuli zigcinwe kwixabiso ngalinye le-RH% kwiiyure ze-48 ngaphambi kokuba i-conductivity ibekwe iliso kude kube uzinzo.I-ionic conductivity ezinzileyo yexabiso le-RH% elinikiweyo (σi) yamiselwa ukusuka kwi-high-frequency intercept kunye ne-axis yokwenyani kwiiploti zeNyquist.
Yonke imilinganiselo ye-electrochemical kunye nokulungiswa kwesampula ehambelanayo kwenziwa kwibhokisi yeglavu ezaliswe yi-argon (PureLab, PL-HE-4GB-1800; <1-ppm O2 kunye ne-H2O amanqanaba) anikezelwe kwiimpawu ze-electrochemical.
I-morphology yepellet ene-Li[BMP][TFSI] ILE nangaphandle kwayo yajongwa nge-SEM kusetyenziswa isixhobo se-Thermo Fisher Scientific Apreo kwi-1.5 ukuya kwi-2.0 kV apho isebenza kwimowudi yomfanekiso we-double-detector usebenzisa i-T1 kunye ne-T2 detector ngokuhambelanayo ukulungiswa komfanekiso ophilayo, kunye ne-T2 detector yasetyenziselwa ukurekhoda imifanekiso ye-SEM ebonisiweyo;isampuli yalungiswa kwi-carbon conductive tape.I-TEM yenziwa kusetyenziswa iTecnai esebenza kuma-300 kV.
I-ILE yasuswa kwi-pellet ye-SCE ngeendlela ezimbini ezahlukeneyo.Enye inketho yokufumana i-silica ene-porous yenziwa ngokuntywiliselwa i-SCE kwi-acetone kwiiyure ze-12 ukukhupha i-Li[BMP][TFSI] ILE.Oku kuhlanjululwa kwaphindwa kathathu.Olunye ukhetho yayikukufaka i-SCE kwi-ethanol.Kule meko, i-ethanol yasuswa ngokusebenzisa i-CO2 eyona nto isomisi ebalulekileyo.
Izixhobo ezibini ezahlukeneyo zasetyenziselwa ukomisa ngokugqithiseleyo, oko kukuthi, i-Automegasamdri-916B, i-Tousimis (indlela ye-1) kunye nesixhobo esakhiwe ngokwezifiso yi-JASCO Corporation (indlela ye-2).Xa usebenzisa isixhobo sokuqala, ulandelelwano lokumisa luqale ngokuhla kweqondo lobushushu ukuya kutsho kwi-8°C.Emva koko, i-CO2 yahlanjululwa kwigumbi, inyusa uxinzelelo kwi-5.5 MPa.Kwisinyathelo esilandelayo, i-CO2 ishushu kwi-41 ° C, inyusa uxinzelelo kwi-MPa ye-10, kwaye igcinwe njenge-5 min.Ukugqiba, kwinqanaba lokuphuma kwegazi, uxinzelelo lwehliswa ngexesha le-10 min.Xa usebenzisa isixhobo esakhiwe ngokwesiko, kwalandelwa ulandelelwano olufanayo.Nangona kunjalo, ixesha kunye noxinzelelo lwahluke kakhulu.Emva kwesinyathelo sokucoca, uxinzelelo lonyuswe kwi-MPa ye-12 kwiqondo lokushisa lama-70 ° C kwaye lwahlala lunjalo kwi-5 kwiiyure ze-6.Emva koko, uxinzelelo luye lwancipha ngamaxesha ukusuka kwi-12 ukuya kwi-7 MPa, i-7 ukuya kwi-3 MPa, kunye ne-3 ukuya kwi-0 MPa ngexesha lexesha le-10, i-60, kunye ne-10 min, ngokulandelanayo.
I-nitrogen physisorption isotherms yalinganiswa kwi-T = 77 K usebenzisa i-Micromeritics 3Flex yokuhlaziya i-face characterization.I-silica ene-porous efunyenweyo yaphuma emva kweeyure ze-8 kwi-100 ° C phantsi kwe-vacuum ye-0.1-mbar.I-silica ene-porous ephuma kwi-supercritical drying yakhutshwa ngaphandle kweeyure ze-18 kwi-120 ° C phantsi kwe-vacuum ye-0.1-mbar.Emva koko, i-nitrogen physisorption isotherms yalinganiswa kwi-T = 77 K usebenzisa i-Micromeritics TriStar 3000 i-automated gas adsorption analyzer.
Imilinganiselo yePFG-NMR yenziwa kusetyenziswa iJEOL JNM-ECX400.Ulandelelwano oluvuselelweyo lwe-echo pulse lusetyenziselwe imilinganiselo yokusasazwa.Ukuthotywa kophawu lwe-echo oluqhelekileyo, u-E, luchazwa kwinxaki (38)E=exp(−γ2g2δ2D(Δ−δ/3))(1)apho u-g ingamandla okubetha kwethanga, δ bubude bexesha lokuthambeka. i-pulse, ∆ lithuba eliphakathi kweencam ezikhokelayo zee-gradient pulses, γ ngumlinganiselo wemagnetogyric, kunye no-D yi-coefficient yokuzabalaza kweeathom.I-self-diffusion coefficients iqikelelwe ngokufaka izibonakaliso ze-echo ezifunyenwe ngokutshintsha ∆ nge-Eq.1. I-7Li ikhethwe ukumisela i-coefficient yokusabalalisa i-ion lithium.Yonke imilinganiselo yenziwe kwi-30°C.
Ukusetwa kwe-Raman spectroscopy yayiyinkqubo yasekhaya esebenzisa i-argon ion ekwaziyo ukudityaniswa kwisibane esivuselelayo se-laser esingama-458-nm esadityaniswa kwimakroskopu eguqulweyo ye-Olympus IX71, kunye nokukhanya okusasazeke ngasemva kwagqithiswa ngokuseta i-TriVista kathathu ye-spectrometer (Princeton Instruments). ), eyayisetyenziselwa ukusasaza imiqondiso ye-optical ebhaqwe kusetyenziswa ikhamera yesixhobo esine-nitrogen epholileyo epholileyo.Ukunikezelwa kwe-optical absorbance ephezulu kula maza obude, amandla e-laser aphantsi ngokwentelekiso asetyenzisiweyo ukunqanda ukufudumeza kwelaser (<100 W · cm−2).
I-DFT yokwenziwa kwejiyometri yelizwe lomgangatho ophantsi kunye nokubalwa kwamaza ohlalutyo kusetyenziswe i-B3LYP hybrid esebenzayo kunye ne-6-311++G** iseti yesiseko, kunye ne-Grimme's atom-pairwise dispersion correction (39) kunye ne-Becke-Johnson damping scheme (D3BJ), njenge iphunyezwe kwi-ORCA 3.0.3 (40).I-Raman spectra ifaniswe ngokusebenzisa i-ORCA, kwaye ukubonwa kweepropathi ze-molecular kwaphunyezwa ngokusebenzisa iphakheji ye-software ye-Avogadro (41) kunye nohlaziyo oluxhaswa yi-ORCA.
Yonke imilinganiselo ye-electrochemical kunye nokulungiswa kwesampula ehambelanayo kwenziwa kwibhokisi yeglavu ezaliswe yi-argon (PureLab, PL-HE-4GB-1800; <1-ppm O2 kunye ne-H2O amanqanaba) anikezelwe kwiimpawu ze-electrochemical.I-pellet ye-SCE ifakwe kwi-ribbon ye-Li (i-Sigma-Aldrich; 99.9%) ixhaswe kwisitya sobhedu njenge-electrode ye-counter kunye ne-punched out Li disks (i-5-mm ububanzi) ibekwe phezu kwe-pellet ye-SCE ukuze ibhekiselele kunye nokusebenza. ii-electrodes.Ukuseta kuboniswe kwifig.S7.Izikhonkwane zegolide zazisetyenziselwa ukunxibelelana ne-lithium reference kunye ne-electrodes esebenzayo.I-cyclic voltammetry kunye nemilinganiselo ye-impedance yenziwa ngokusebenzisa i-PGSTAT302 (Metrohm) elawulwa nge-software ye-Nova.I-voltammetry ye-cyclic yenziwe nge-scan rate ye-20 mV / s.Imilinganiselo ye-impedance yenziwe nge-AC amplitude ye-5 mV kunye nokuphindaphinda ukusuka kwi-1 MHz ukuya kwi-0.1 Hz.
I-electrode ye-40-nm ye-anatase ye-TiO2 encinci yefilimu ifakwe kwi-atomic layer deposition (ALD) kwi-silicon wafer ye-300-mm kunye ne-40-nm ye-TiN underlayer nayo ifakwe yi-ALD.I-electrode egqwesileyo yokuvavanya i-electrode yokubonisa i-Li-ion conductivity ngokusebenzisa i-electrolytes, njengoko i-TiO2 ayinakukhathazeka ngenxa yokuchithwa kweekhemikhali okanye ukuxinzezeleka komatshini (akukho tshintsho olubalulekileyo lwevolumu) ngexesha lokuhamba ngebhayisikili.Ukulinganisa iseli ye-Li / SCE / TiO2, i-ILE-SCEs yazaliswa kwindandatho ye-PTFE kunye nobubanzi be-4.3 mm kunye nobukhulu be-0.15 cm;emva koko, umsesane wawufakwe phakathi kwe-Li foil kunye nefilimu ye-TiO2.
I-Nano-SCE / ifilimu encinci ye-electrode i-half stacks, ene-electrode ye-LMO, yenziwe ngokudibanisa ifilimu ye-nano-SCE kwii-electrodes.Isamba se-150 μl ye-x = i-1.5 isisombululo, esineminyaka engama-2 ubudala, yachithwa kwindandatho yeglasi (i-diameter, 1.3 mm) efakwe kwiifilimu ze-electrolyte.Iringi yaza yatywinwa ngeparafilm, kwaye isisombululo sagcinwa kwisitya esitywiniweyo kwijeli kangangeentsuku ezi-4.I-gel / i-electrode stack eyenziwe ngoko yomiswa ukwenza i-nano-SCE / i-electrode stacks.Ubunzima be-nano-SCE, obunqunywe ngokusebenzisa i-micrometer, yayiyi-300 μm.Ekugqibeleni, i-lithium foil (i-1.75 mm ubukhulu, i-99.9%; i-Sigma-Aldrich) icinezelwe kwi-nano-SCE / i-electrode stack njenge-anode.I-electrode ye-100-nm ye-LiMn2O4 (LMO) encinci-yefilimu yafakwa kwi-radio frequency sputtering phantsi kwe-Ar flow kwi-silicon wafer egqunywe nge-80-nm Pt (DC sputtering)/10-nm TiN (ALD) ii-underlayers.Esi sitaki sifakwe kwi-20 min kwi-800 ° C kwi-oxygen emoyeni.
Iifilimu ze-electrode ze-LiFePO4 (LFP) zalungiswa nge-blade coating.Okokuqala, i-carbon emnyama kunye ne-LFP (i-2 ukuya kwi-3 μm) yongezwa kwisisombululo samanzi esine-carboxymethylcellulose (CMC) ukwenza umxube owathi emva koko u-homogenized usebenzisa umxube weplanethi.Emva koko, imveliso ye-homogenized yaxutywa ngamanzi adibeneyo kunye ne-fluorinated acrylic latex (JSR, TRD202A) kwi-vacuum mixer ukwenza i-slurry yokugqoka i-electrode.I-slurry elungisiweyo yaphoswa kwiifoyile ze-aluminium ukufaka iifilimu ze-electrode usebenzisa i-blade coater.Ezi electrode ezimanzi zifakwe ngokukhawuleza zifakwe ngaphambili kwi-oven ye-atmospheric kunye nomoya omileyo kwi-70 ° C kwi-10 min kwaye zomiswe ngakumbi kwi-140 ° C kwiiyure ze-4 kwi-oven vacuum.Iifilimu ze-electrode ezomileyo zaziquka i-91 wt% LiFePO4, i-3 wt% i-carbon black, i-2 wt% CMC, kunye ne-4 wt% TRD202A.Ubukhulu befilimu yi-30 μm (imiselwe ngokusebenzisa i-micrometer kunye ne-electron microscope yokuskena).
Iifilimu ze-electrode ze-Li4Ti5O12 (LTO) zenziwe kwiifayili zobhedu ngendlela efanayo.Ukubunjwa kwee-electrode ezomileyo yi-85 wt% Li4Ti5O12, 5 wt% carbon black, 5 wt % CMC, kunye ne-5 wt % fluorinated acrylic latex (TRD2001A).Ubukhulu befilimu yi-40 μm.
Isisombululo se-SCE sachithwa kwi-particle-based LFP kunye nefilimu ye-electrode ye-LTO.Okokuqala, i-100 μl ye-x = 1.5 isisombululo, esineminyaka engama-2 ubudala, yachithwa kwifilimu ye-electrode, enobubanzi obuyi-15 mm, ifakwe kwi-cell cell (#2032, MTI).Emva kokuba i-SCE edibeneyo ifakwe i-gelled, ifilimu yomiswa kwi-25 ° C kwiiyure ze-72 kwi-oven vacuum (<5 × 10-2 mbar) ukwenza i-nano-SCE kunye ne-electrode stack.Ubukhulu be-nano-SCE bebuyi-380 μm.Ekugqibeleni, i-lithium foil yacinezelwa kwi-SCE / i-electrode stacks njenge-anode, kwaye i-cell cell yatywinwa.Imilinganiselo ye-electrochemical yenziwe kusetyenziswa i-Solartron 1470E potentiostat kwiqondo lokushisa.
Imathiriyeli eyongezelelweyo yeli nqaku iyafumaneka http://advances.sciencemag.org/cgi/content/full/6/2/eaav3400/DC1
Uluhlu S1.Iimpawu zesakhiwo se-silica matrix kwi-nano-SCE yokunyusa iqhezu le-molar yolwelo lwe-ionic ukuya kwi-silica (ixabiso le-x) eligqitywe kwi-N2 ye-adsorption / desorption okanye imilinganiselo ye-BET kunye nokuqwalaselwa kwe-TEM.
Eli linqaku elivulekileyo lokufikelela lisasazwe phantsi kwemiqathango yelayisensi ye-Creative Commons Attribution-NonCommercial, evumela ukusetyenziswa, ukuhanjiswa, kunye nokuveliswa kwakhona kuyo nayiphi na indlela, okoko nje ukusetyenziswa okubangelwayo kungeyonzuzo yorhwebo kwaye ibonelele umsebenzi wokuqala ngokufanelekileyo. icatshulwe.
QAPHELA: Sicela idilesi yakho ye-imeyile kuphela ukuze umntu omcebisayo eli phepha azi ukuba ubufuna alibone, kwaye asiyoimeyile eyinkunkuma.Asithathi nayiphi na idilesi ye-imeyile.
Lo mbuzo ngowokuvavanya ukuba ngaba ungumtyeleli wabantu okanye awunguye kwaye uthintele ukuhanjiswa komyalezo ozenzekelayo.
NguXubin Chen, Brecht Put, Akihiko Sagara, Knut Gandrud, Mitsuhiro Murata, Julian A. Steele, Hiroki Yabe, Thomas Hantschel, Maarten Roeffaers, Morio Tomiyama, Hidekazu Arase, Yukihiro Kaneko, Mikinari Shimada, Maarten Mees, Philippe Meee.
NguXubin Chen, Brecht Put, Akihiko Sagara, Knut Gandrud, Mitsuhiro Murata, Julian A. Steele, Hiroki Yabe, Thomas Hantschel, Maarten Roeffaers, Morio Tomiyama, Hidekazu Arase, Yukihiro Kaneko, Mikinari Shimada, Maarten Mees, Philippe Meee.
© 2020 Umbutho waseMelika wokuPhucula iNzululwazi.Onke Amalungelo Agciniwe.I-AAAS ngumlingane we-HINARI, i-AGORA, i-OARE, i-CHORUS, i-CLOCKSS, i-CrossRef kunye ne-COUNTER.I-Science Advances ISSN 2375-2548.
Ixesha lokuposa: Jul-15-2020